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VI. On the General Theory of Integration.

By W. H. Youna, Se.D., St. Peter’s College, Cambridge.
Communicated by Dr. E. W. Hosson, F.R.S.
Received April 23,—Read May 19, 1904.

Introductory.™

RiemaNNy was the first to consider the theory of integration of non-continuous
functions. As is well known, his definition of the integral of a function between
the limits o and b is as follows :-—Divide the segment (a, b) into any finite number
of intervals, each less, say, than a positive quantity, or norm d ; take the product of
each such interval by the value of the function at any point of that interval, and
form the sum of all these products; if this sum has a limit, when d is indefinitely
diminished which is independent of the mode of division into intervals, and of the
choice of the points in those intervals at which the values of the function are
considered, this limit is called the integral of the function from a to b.

The most convenient mode, however, of defining a Riemann (that is an ordinary)
integral of a function, is due to DARBOUX ; it is based on the introduction of wpper
and lower integrals (intégrale par exces, par défaut ; oberes, unteres Integral). The
It may be shown that, if the interval (a, D) be
divided as before, and the sum of the products taken as before, but with this
difference, that instead of the value of the function at an arbitrary point of the
part, the upper (lower) limit of the values of the function in the part be taken and
multiplied by the length of the corresponding part, these summations have, whatever

definitions of these are as follows :

be the type of function, each of them a definite limit, independent of the mode of
division and the mode in which d approaches the value zero. This limit is called the
upper (lower) integral of the function. In the special case in which these two limits
agree, the common value 1s called the integral of the function.

The progress of the modern theory of sets of points (Théorie des ensembles ;
Mengenlehre), due, as is well known, chiefly to (. CanToR, though taking its origin
im RiEMANN’s paper ¢ Ueber die Darstellbarkeit einer Funktion durch eine trigono-
metrische Reihe, naturally leads us to put the question how far these definitions

* An abridged statement of the contents of this memoir will be found in the ¢ Abstract” published in
the ¢ Proceedings of the Royal Society,” vol. 73, pp. 445-449.
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222 DR. W. H. YOUNG ON THE GENERAL THEORY OF INTEGRATION.

can be generalised. This theory has in fact taught us on the one hand that many of
the theorems hitherto stated for finite numbers arve true with or without modification
for a countably infinite number, and on the other hand that closed sets of points
possess many of the properties of intervals.  We may, in accordance with these facts,
divide the segment (1) into an infinite number of non-overlapping intervals, in which
case, however, seeing that such a set of intervals always has points which are
external or semi-external to them, we must in general add a set of points to the
set of intervals, if’ the division of the segment is to be properly performed, that is,
if all the points of the segment are to be accounted for in our division ; or, more
genevally, (2) into a finite or countably infinite number of sets of points.

What would be the effect on the Riemann and Darboux definitions, if in those
definitions the word ““finite” were replaced by ¢ countably infinite,” and the word
“interval 7 by ‘“set of points”? A further question suggests itself:—Are we at
liberty to replace the segment (a, b) itself by a closed set of points, and so define
integration with respect to any closed set of points?

Going one step further, recognising that the theory of the content of open sets
quite recently developed by M. LEBEsauxr™ has enabled us to deal with all known open
sets in much the same way as with closed sets as regards the very properties which
here come into consideration, we may attempt to replace both the segment and the
intervals of the segment by any kinds of measurable sets.

In the Riemann and Darboux definitions it is tacitly assumed that the interval
(or, b) is finite, and that the function is throughout the interval finite and possesses
finite upper and lower limits. The discussion of the integration of a function which
18 not necessarily finite, over an interval not necessarily finite in length, requires
separate consideration, and the definitions of such integrals, called improper integrals,
are of the nature of extensions of the definitions of ordinary integrals. Bearing in
mind the somewhat unsatisfactory and artificial character of such extensions, we may
hope finally that our discussion{ may throw light on improper integrals also.

In M. LeBESGUE’S valuable memoir, already referred to, a striking addition has been
made to the previously existing knowledge of the subjects dealt with. He has
shown that a more general definition than that of Rrmmanw, available for all known
functions, one moreover coinciding with that of Riemany in the case of all functions
integrable in the Riemann sense, may be given; a definition possessing, among
others, the remarkable property of permitting passage back from the derivatives of
a continuous function to the continuous function itself.

In the present paper I attempt to discuss the whole matter, and take occasion in
the proper place to bring LEBEseur’s work into connection with my own. Some
special cases of the results I obtain have been given by me in the paper presented to

* «Intégrale; Longueur; Aire,” ¢ Ann. di Mat.,’ 1902. (Y. also a paper by the Author, “Open Sets
and the Theory of Content,” ¢ Proc. Lond. Math. Soc.,” Ser. 2, vol. 2, Part L., p. 16.
t In the instalment now presented to the Society I confine my attention however to proper integrals.
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DR. W. H. YOUNG ON THE GENERAL THEORY OF INTEGRATION. 223

the L.M.S. already cited, and I apply one of the results of this paper, viz., that the
content of any closed n dimensional set may be expressed both as an ordinary integral
in terms of an n—1 dimensional content, or as the upper integral of the content of
sets of lower dimensions, to obtain the corresponding theorem for any measurable set
(contained in a closed set of finite content).

Parr 1.—Or Finmri ProPER INTEGRATS.

§ 1. The necessary and sufficient condition that a function should satisfy the
requirements of RieMaNN’s definition is simply that the content of the points of
continuity of the function should be equal to the length of the segment (a, b), (or,
in the case of a multiple integral, to the content of the region over which the
integration is extended), that is to say, when this condition is satisfied, the sum-
mations referred to in the Riemann definition have a definite limit, independent of
the mode of: division, &c. Is this still true when for “interval” the expression ¢ set
of points ” is substituted,® and for ““length of interval” the ¢ content of the set of
points 7 2 The following example shows that, when these substitutions have been
made, the definition, as it stands, ceases to have any meaning, even in the case of
continuous functions.

1
Fxample 1.—Take y = x as the function. The Riemann integral fwdm has the
0

value §. If, however, after dividing the segment (0, 1) into n equal intervals, we

abstract the u points
3 7 . 271-__1
4> Breee ————-—~2” ,

and add them singly to what remains of the intervals, we obtain n measurable sets of

. . . 1 . . .
points, each of the same content as before, viz., =; in each, however, there is a point
I n .

at which the function has a value greater than #, except possibly in one of the sets
in which there is a point at which the function has the value . The summation is
therefore always greater than %, so that it is clear that we do not get the same limit
as before when 7 is indefinitely increased. _ A
The principle of this example shows that in the general case also, except in the
single case when the function is a constant, different modes of division of the segment
into a finite number of sets of points each of content less than a given norm d, and
different modes of proceeding to the limit, will certainly not always give the same
limiting value of the summations. Thus, suppose the function to be continuous at its
upper limit, then we can arrange that the mode of division is such that to every
partial set at every stage a point belongs for which the function differs from its

* I shall always, except when the contrary is stated, suppose that the sets employed are measurable sets,
so that the sum of two non-overlapping sets has for content the sum of their separate contents.
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224 DR. W. H. YOUNG ON THE GENERAL THEORY OF INTEGRATION,

maximum value by a quantity as small as we please, and there is nothing to prevent
our taking precisely this point as that at which the value of the function is to be
taken in forming the summation ; similarly for the minimum value, and it is clear
that the limits obtained in these two cases could only agree when the function is a
constant.

It is plain, moreover, that there is no room for discussion of the range of possible
values of limits corresponding to the various conceivable modes of division. Speaking
generally, the range will be from SM to Sm, where S is the length of the segment,
or more generally n-dimensional volume of the region, and M and m are the upper and
lower limits of the values of the function. Thus the Riemann definition completely
breaks down when we attempt to generalise it in this direction.

§ 2. There is another direction, however, in which an important generalisation of
the Riemann definition is possible. If we change the words ¢finite number of
intervals” into “set of intervals” and add “such that the content of the external
points is zero,” the definition still holds good ; we get a perfectly definite limit, which
is, of course, the Riemann integral.

To prove this, we notice first that the content of the set of intervals is in this case,
and in this case alone, the same as that of the segment (or region) under discussion,
say .

Let the intervals be arranged in any way in countable order d,, d,... Then, since
the d's are all positive, their sum 1s an absolutely convergent series; therefore the
same is true when the content of each d, is multiplied by a quantity f, which, for all
values of », lies between finite upper and lower limits, say between =M, as is the case
in forming our summations.®

If we consider n of these intervals in order di, d, ... d,, these leave over a finite
number of complementary intervals, say i, ’y... d’,, and we can so choose n that

. . e . . .
the sum of these latter intervals /, is less than ——, while the contribution to our

oM’
summation over the remaining intervals d,,1, ¢, 5 ... is numerically less than le.

If now we form the summation in RIeMANN's way over the finite number of
intervals dy, dy ... d,, d', d's . .. d',, and compare 1t with the corresponding summation
over the set of intervals d,, d, ... ad inf., we see that the difference between the two
summations is less than e¢.  Since ¢ is at our disposal, and we can insure that both
the intervals d, and /, are less than any assigned norm, this proves the statement
embodied again in the following theorem :—

* T take this first opportunity of emphasising the fact that, though it is convenient, indeed necessary,
in forming the sum of an infinite number of terms to arrange them in some sort of order, in doing so here
we do not introduce the idea of order into the concept of integration. Indeed, from the definitions it is
evident that the concept of integration no more of itself involves the idea of order than do the concepts of
length, area, and volume. The distinction of the two notions has, perhaps, not always been present to
the mind of some writers.
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Theorem 1.—If the interval (a, b) be divided into a set of intervals and o set of
points of zero content, the length of each wnterval being less tham some assigned norm d ;
and tf the product of the length of each interval by the value of a giwen integrable
Junction at any poiwnt of that wnterval be formed and the summation of all such
products calculated, this summation has o definite limit when d s wndefinitely
dvminished ; thus limit is, of course, the integral of the function.

Corollary.—The value of the integral of an integrable function is unaltered if, at
the points of a set of zero content, we arbitrarily change the values of the function.

In other words, if we add to the function an integrable null function, we leave the
integral unaltered.

It will be convenient to prove the following theorem, which is, in pra,cticé,
indispensable ; from it the theorem on which DarBoUX’s definition of upper (lower)
integration is based, can be at once deduced :—

§ 3. Theorem 2.—Given any small positive quantity e,, we can determine a positive
quantity e, such that, if the segment S be dwvided up n any manner into a finite
number of non-overlapping wtervals, then, provided only the length of each interval is
less than e, the upper (lower) summation of any function over these intervals differs
by less than e, from a definite limiting value, the upper (lower) integral.

The following is the proof for the case of the upper integral; with slight modifi-
cation it holds for the lower integral.

Let I be the lower limit of all such summations; then we can determine a division
of S into a finite number n of intervals, such that the upper summation over these
intervals lies between I and I+ 2e,. .. .

Let e be'chosen to satisfy the following equation

e =4
2nM’
where M is any quantity greater than the greatest value of the function, and let us
consider any division whatever, into a finite number of non-overlapping intervals each
less than e. The number of such intervals which do not lie entirely in one of the
n intervals previously determined, is at most n, so that the sum of the terms
corresponding to these intervals is less than nMe, that is Le,.

In each of the remaining intervals the upper limit of f is not greater than the
upper limit of f in that one of the n intervals in which it lies, so that the upper
summation over the remaining intervals is not greater than that over the n intervals.
Hence the summation over our intervals, each being less than e, is less than I+e,.

| [Q.E.D.]

§4. We have now to discuss the Darboux form of the definition of integration,
that is, in the first instance, to consider the effect of the modifications proposed on
Dareoux’s definitions of upper and lower integration.

The following example* shows that the theorems stated in these definitions no

¥ Example 1, of course, shows this in the case of an integrable function.
VOL. CCIV.—A. 2 ¢ '


http://rsta.royalsocietypublishing.org/

/an
A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

226 DR. W. H. YOUNG ON THE GENERAL THEORY OF INTEGRATION.

longer hold, that is to say, it is no longer true that definite limits, independent of the
mode of division, &e., exist, when sets of points are substituted for intervals :—

Frample 2.—Let y be a function of x, which is zero everywhere, in the segment
(0, 1), except at every point of a perfect set G, nowhere dense, whose content is I,
and at every point of G let v = 1.

If we divide the segment (0, 1) into n equal parts, each of length less than d, the
upper summation, that is, the summation which corresponds to the upper integral, is
always greater than I, but approaches the value 1 as d is indefinitely decreased. It
I is zero (in which case the function is integrable in RieMANN’S sense), the limit is
always zero, and in any case it is less than 1. We can, however, arrange so that we
get 1 as limit. ,

Let the semi-external points of the intervals be arranged in countable order
P, Py, ...; take the same division as before, abstracting, however, the points
P, Py, ... P,, and then adding these points singly to the single parts; thus we have
a division into n measurable sets, each of content less than d, in each of which the
function has the value unity, so that the summation always has the value unity
however small d may be ; therefore we get 1 as limit.

§ 5. If, on the other hand, we retain the intervals, but drop the restriction that
they should be finite in number, there remains over a complementary set of points G,
of content, say, I. The following example shows that the upper summations over a
set of intervals have not then in general a definite limit, so that this extension of the
definition of upper integral cannot be made without some restriction :—

Example 3.—Take a perfect set, nowhere dense, of content I in the segment (0, 1),
and let the function be zero everywhere except at the points of this set where the
value of the function is unity.

The value of the upper integral as defined by DarBoux is L

Now let d be any assigned norm, and let an odd integer m be determined so that
(m—1)d>1.

Divide the segment (0, 1) into m equal parts, and blacken the middle part. Then
divide each of the (m—1) remaining equal parts of the segment into m* equal parts,
and blacken each of the middle parts, and so on, in the usual manner. The set of
intervals, each less than d, which we thus obtain, have content

1 m—1_ (m—1)(m’—1) 1,1 1> 1 < 1) 1>
1 USRS 3y § TR VL T VR T
m+ mA+! } miTetl + mB{Lm‘g m % m*\ fm) m? +

which is less than d. The complementary set of points is a perfect set nowhere
dense of content greater than (1—d). The upper summation of the given funetion
over these intervals is then at most equal to d, and is, therefore, less than the upper
integral as soon as the norm is less than I, and has the limit zero.

The principle of this example shows that, if we omit the condition that the number
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of wntervals should be finite, the upper summation can always be made numerically
as small as we please. The same is true of the lower summation.

Theorem 3.—Lf, however, we make the restriction thut the set of points complementary
to the intervals always has zero content, or has a content which decreases without limat,
as d does so, the limuits approached by the wpper and lower summations are perfectly
definite, and are, of course, the upper and lower tntegrals.

The proof of this statement is identical in character with that given in §3 for the
corresponding theorem regarding the integral of an integrable function, which theorem
is, of course, a special case of the above.

We should naturally ask whether we cannot correct this diserepancy by adding to
the upper or lower summation over the set of intervals the product of the content of
the complementary set of points into the upper or lower limit of the function for
points of that set ; or, if this does not suffice, by dividing up the complementary set
itself into components and adding the sum of the corresponding products. That
neither of these corrections suffice is shown by the following example :—

Erxample 4.—Take the same set as before at which the function has the value 1, and
inside the largest of its black intervals place a similar set G of content I, at every
point of which internal to that black interval the function has the value 2. Every-
where else the function is to be zero. The upper integral is I+2T".

If now we merely subdivide the black intervals of G’ which lie inside the largest
black interval of G, and subdivide the remaining black intérvals of G, the product of
the content of the complementary set of points into the upper limit of the function
for points of that set will be at least 2 (I+1’), while the summation over the intervals
will be zero. Thus the addition of the term in question would not correct the
result.

If, on the other hand, we subdivide the complementary set into components whose
contents are themselves less than the norm d, we could, on the principle which has
already been employed, insure that each component contained a point at which the
function had the value 2, and the result would be the same as before. In neither
case do we obtain the upper integral.

§ 6. As we have seen in §4 and §5, the Darboux definitions of upper and lower
integration require modifications, if they are to be generalised in the manner proposed.

We are naturally led to define upper and lower integration tentatively as follows :—

Let the division of the segment into (measurable) sets be performed in any con-
ceivable way, and let the upper limit of the values of the function in each partial
set be multiplied by the content of that set, and let the sum of these products be
formed ; then the upper integral is defined to be the lower limit of all such sums.

Similarly the lower integral might be defined, the words “upper” and *lower”
being throughout interchanged. There is clearly no logical reason to prevent our
considering these limits.

The names upper and lower integrals will, however, not be suitable, unless (1) the

262
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upper integral, so defined, is greater than, or equal to, the lower integral; (2) these
definitions agree with DARBOUX’s in all cases.

It is easy to prove that (1) holds :—

Theorem 4.—The lower limit of the upper summations is not less than the wpper
lemat of the lower summations.

For otherwise we could clearly take a quantity L lying between the upper and
lower integrals so defined, and find two divisions of the segment so that the upper
summation for the first division is less than L and the lower summation for the
second greater than L. If, now, we consider the division of the segment got by
combining these two divisions, that is, if we divide each of the former sets up into
the components which it has in common with each of the latter sets, the upper
summation is not increased nor the lower summation diminished, thus for this
division the upper summation is less than L and the lower summation greater than L,
which is impossible. This proves (1) to hold.

In regard to (2) the following simple example shows that, in the general case,
there is no agreement between our tentative definitions and those of Darroux. By
dividing up into sets of points, instead of into intervals, we get a lower value for the
upper integral than that given by DarBoux’s definition, and a greater value than
the lower integral.

Fxample 5.—Take the function which is 1 at all the rational points of the
segment (0, 1), and zero everywhere else. The Darboux upper integral, from 0 to 1,
has the value 1; the lower limit of all possible upper summations is however 0, since
the rational points can be enclosed in a set of intervals whose content is as small as
we please.

§7. T now proceed to show that in the case of a function which is integrable, in
the ordinary sense of the word, so that the ordinary upper and lower integrals
coincide, the division into sets of points, instead of merely into a finite number of
intervals, leads to the same limit, viz., the integral of the function. To see this, we
have merely to remark that the upper and lower summations are respectively less
than the ordinary upper integral and greater than the ordinary lower integral,
except in the case of equality, and that, as shown in the preceding article, the
lower limit of the upper summations is not less than the upper limit of the lower
summations.

Thus we have the theorem :—

Theorem 5.—If o function be integrable in « given segment (region), the value of
the integral is equal to the limit obtaned as follows : divide the segment (region) into
any finite or countably infinite number of measurable sets of points, multiply the
content of each set by the upper (lower) limit of the values of the function for points of
that set, and sum all such products ; then the lower (upper) limit of such summations
for every concewable mode of division is the integral of the function.

§8. T next proceed to show that in the case of an upper (lower) semi-continuous
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function, the upper (lower) integrals may be obtained in a similar way, so that,
wn the case of an upper semi-continuous function the tentatie definition discussed
wm § 6 of the upper wntegral can be retained, and the same s true of the lower
wntegral of a lower semu-continuous function.

To prove this let us suppose the segment (A, B) =S divided up into a finite or
countably infinite number of sets of points Ey, K, ..., so that the corresponding upper
summation

Efi+Bofot...

differs from the minimum X by less than some assigned small positive quantity e.

Now round every point P of E; describe a small interval, in which the maximum
of f differs from the value of £ at P by a quantity less than some assigned small
positive quantity e, We thus get a definite set of intervals enclosing all the points
of E;; their content is therefore not less than the content E;, but we can so construct
them that it is less than E,+¢';, where ¢/; is another small positive quantity as small
as we please. In each of these intervals the maximum of the function f is less
than f;+ e

Let us do likewise for each set E,, choosing the small quantities so that

etegt... =cdi+eh+... =e

Applying the Heine-Borel theorem to all these intervals, which enclose every point
of By, E,, ..., that is of (A, B), we can determine a finite number of these intervals
enclosing every point of (A, B), and we can insure that the content of these intervals
differs from their sum by less than e.* To each of these intervals we can attach the
index of the first of the sets E;, E, from which it was constructed; the content
of those which have the index ¢ will then be less than E;+¢/; and the maximum in
each will be less than f;+¢, Hence the upper summation over the non-overlapping
intervals, consisting partly of the simple parts of these intervals and partly of the
overlapping parts, is less than

(Ei+eh) (fite)+(Bates) (fate)+...+Me,

where M is a positive quantity greater than the numerically greatest values of f.
That is, this upper summation is less than X+¢+2Me+Se+e, which, since e is at our
disposal, proves the theorem.

A similar proof can be given for the case of the lower integral of a lower semi-
continuous function, or we may deduce the corresponding theorem in this case from
the fact that a lower semi-continuous function becomes an upper semi-continuous
function when its sign is changed, and at the same time the lower integral becomes
the upper integral.

Bearing in mind now that the upper integral of a function is equal to that of

* Cp. «“ An extension of the Heine-Borel Theorem,” ‘ Messenger of Mathematics,” New Series, No. 393,
January, 1904,
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its associated upper limiting function, and that its lower integral is equal to that of
its associated lower limiting function,® we have the following theorems, corresponding
to that given at the end of § 7.

Theorem 6.—To find the wpper wntegral of any function we may proceed as follows :
dwide the segment or region wnto any finete or countably infinite number of measurable
sets of points, multiply the content of each set by the wpper (lower) lumit of the
maxima T (menima) of the function at povnts of that set and sum all such products ;
then the lower (upper) limit of all such summations for every conceivable mode of
division ts the upper (lower) integral of the function for the segment or region.

§9. We are now able to define upper and lower entegration over o set of points,
instead of merely over an ordinary region ; we may, indeed, if we please, suppose the
function defined only for the set of points. The set will be assumed to be measurable,
so that, like an ordinary region, it can be divided into component sets, each of which
is measurable.

In the special case in which the content of the set ws zero, we define the wpper
and lower integrals to be zero also. In the general case the definition will be as
follows :—

Duvide the fundamental set S into any finte or countably infinite number of
measurable components, multiply the content of each component by the upper (lower)
limit of the maxima (minama) with respect to S of the function at all points of that
component and sum oll such products; then the lower (upper) limit of all such
summations for every conceiable mode of division is the upper (lower) integral of the
Sunction for the fundamental set S.

Further, when the wpper and lower integrals for S are equal, the function may be
sazd to be integrable over that fundamental set S.

Thus we have defined upper integration, lower integration, and integration over
any measurable set S in such a manner that, in the particular case when the set S is
a segment or region, we get the ordinary Riemann and Darboux integrals.

§ 10. Summing up our results so far, we saw that, though DArBoUX’s form of the
definition was preferable to RieMaNN's, it did not at once lend itself to generalisation.
I then showed how to modify it so that the number of intervals should not necessarily
be finite, provided that their content was equal to that of the segment. We then
saw how the introduction of the maximum (minimum) at a point, instead of the value

* (p. Upper and Lower Integration, ¢ Proc. Lond. Math. Soc.,” Ser. 2, vol. 2, Part L., p. 55, also § 11,
helow.

It should he carefully noted that the maximum at a point of a set is the lower limit of the upper
limit of the values of the function in a small interval or region containing the point, when that interval
or region is indefinitely decreased. Similarly for the minimum. In the enunciation of the above
theorem, therefore, the word “ maxima (minima) ” has nothing to do with the particular set to which the
point belongs, the upper (lower) limit, however, is taken with respect to that set, that is, it is the upper
limit of the maxima corresponding to the various points of that set. Similarly in the definition of § 9 the
set S takes the place of the segment or region, :
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at a point, permitted of division of the segment into sets of points, instead of merely
into sets of intervals; and, finally, that in this form the definition is applicable to
integration over a set of points.

There is, however, another mode by which we can define integration with respect
to a set of points in such a manner as to get the Darboux integral when the
fundamental set reduces to a segment or ordinary region. This new generalised
definition is in some respects more closely analogous to the original Darboux definition
and brings out, more clearly than the one just given, the distinction between an
interval and a set of points in general, throwing light, as it does, on the question why
it is that the limit of the upper (lower) summations over a segment is different when
the segment is divided into intervals from what it is when the division is into set of
points. Like the Darboux definition, it concerns itself with the actual value of the
function at a point instead of the maximum (minimum) there, while it divides the
fundamental set up into components, closely analogous to the intervals in the Darboux
definition.

It will be convenient, and conduce to clearness, to give first a few preliminary
explanations and theorems. We require to define and give one or two properties of
semi-continuous functions, when the region of existence is a set of points. It will be
found that the introduction of these functions materially simplifies the treatment of
the subject.

§11. The definition of an upper (lower) semi-continuous function, defined for any
fundamental measurable set, does not differ from the usual definition for a segment,
or ordinary region, the maximum (minimum) in each case is to be estimated with
respect to the fundamental set alone, in the usual case the fundamental set being that
segment or region, and in the general case that measurable set.

Theorem 7.—If a function, defined with respect to a measurable set of points S, be
an upper (lower) semi-continuous function, the points at which the wvalue of the
Sunction is = k(=k) form a measurable set.

Complete the set of points S, 7.e., form the smallest closed set H of which S is a
component. Attribute to the function at the points of H which are not points of S
the upper (lower) limit of the values of the original function at points of S in a small
neighbourhood of the point, when that neighbourhood is indefinitely decreased. We
thus get a function which is upper (lower) semi-continuous with respect to a closed
set H. By an argument of precisely the same nature as that used for the case when
H is a segment, it follows that the set of points at which the new function is
=k(=k) is a closed set, say Q.

Since both Q and S are measurable, the same is true of their common component,
which is none other than the set of points at which the given function, upper (lower)
semi-continuous with respect to S, is =k (=#%). [Q.E.D.]

Definition.—If at every point of the fundamental set S we take, as the value of a
new function at any point, the maximum (minimum) with respect to S of a given
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function, I call the new function the associated upper (lower) limiting function of the
gwen function. Using the term oscillation at a point for the excess of the maximum
over the minimum, we get a third associated function by taking as value at a point
the value of the oscillation there, this I call the associated oscillation function.

Theorem 8.—The associated wpper (lower) limiting function of any function with
respect to o fundamental set S is an upper (lower) semi-continuous function with
respect o S.

For, complete the set S, and let H be the closed set so obtained. Form an
extended upper (lower) limiting function as in the proof of the preceding theorem.
The original discontinuous function may be supposed to have the same values in the
points of (H—S8) as this extended upper (lower) limiting function. A proof precisely
similar to that for the continuum™® proves that the new upper (lower) limiting function
is upper (lower) semi-continuous.

Now it is plain that, though the points of (H—G) may have points of G for
limiting points, the upper (lower) limits of the values of the function in the neigh-
bourhood of points of G+ are the same for the old and new upper limiting functions.
Therefore the values of the extended upper (lower) limiting function at the points of
G are the maxima (minima) with respect to either II or G, so that the old upper
(lower) limiting function is upper (lower) semi-discontinuous with respect to S.
[Q.E.D.]

Corollary.—The associated oscillation function, being the sum of two upper semi-
continuous functions,t is wtself an upper semi-continuous function.

Theorem 9.—If S’ be a component of the fundamental set S, such that all the
limiting points of S which belong to S are contained in ', then the upper (lower) limat
of a function in (S—S') is the same as that of the associated upper (lower) limiting
Sunction tn (S—S).

This follows from the fact that the maximum (minimum) at any point P of (S—8)
is unaffected by the values of the function at the points of ¥/, since P is not a limiting
point of 8. Whence the result is easily deduced.

The fact that the value at a point of an upper (lower) semi-continuous function is
the maximum (minimum) at that point in the case of such a function, enables us to
substitute the word wvalue instead of maximum (minimum) in the definition of
integration.

The definition in this case takes the following simplified form :—

Divide the fundamental set S into a finite or couwntably infinite number of
measurable components, multiply the content of each component by the upper (lower)
limat of the values of an upper (lower) semi-continuous function at points of that
component and sum all such products; then the lower (upper) limit of all such

* BAIRE, ¢ Ann. di Mat.” (3), vol. IIL., 1899.
t This property is evidently unaffected by the substitution of a fundamental set instead of a segment
or region.
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summations for every concewable mode of division vs the upper (lower) integral of the
sema-continuous function for the fundamental set S.

. Taking this as the definition of the upper (lower) integral in the case of an upper
(lower) semi-continuous function, the definition in the general case is equivalent to
the following :—

Theorem 10.—The wupper (lower) integral of any function with respect to any
measurable set S ts the upper (lower) integral of its associated wpper (lower) sem-
contrnuous function.

§ 12. The division of the contmuum adopted by DARBOUX is, as has been proved, a
special case of a more general division of the continuum into intervals, by means
of which we obtain an upper summation differing by as little as we please from the
upper integral. This division was such that the sum of the intervals was equal to
that of the segment, while each interval had to be less than a quantity which
depended only on the degree of approximation desired.

When the fundamental set S is not the continuum, but merely any measurable
set, we can, given any small positive quantity ¢/, find a set of intervals enclosing
every point of S, that is, having every point of S as an internal point, the content
of the intervals lying between S and S+¢. If we assign any small positive
quantity ¢, there will only be a finite number of the intervals which are not less
than e, since their content is finite. KEach of these we can divide into a finite
number of parts less than e, or we can in any other way determine inside the
intervals a set of intervals enclosing all points of S, with the possible exception of a
component of S of zero content.

In each of these intervals there is a measurable component of S of content less
than e, and the sum of all these components is S. This division of the set S will be
found to correspond very- closely to the division of the continuum contemplated
above, which is, of course, a special case of such a division; in particular it will be
shown to lend itself conveniently to form approximations to the upper integral.

I shall, for convenience, refer to such a division as a diwviston of S by means of
segments (e, ¢); and the upper summation ot any function over these components
I shall call the upper summation with respect to S over the intervals.

§ 13. Theorem 11.—Given any small positive quantity ey, we can determine o
positive quantity ey, such that, if the fundamental set S be divided in any manner
by means of segments (e, €'), then, provided only e =e, and € =e, the upper
summation of the fumnction with respect to S over these segments differs by less than e
Srom o definite quantity 1, the lower limit of all such upper summations, when S is
duvided by means of segments.

For, I being a lower limit, we can determine a set of intervals enclosing S, such
that the upper summation with respect to S over these intervals lies between
I and I+a, where

6a = €y S (1).
YOL. CCIV,—A, 2 "


http://rsta.royalsocietypublishing.org/

N

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

234 DR. W. . YOUNG ON THE GENERAL THEORY OF INTEGRATION.

Also, by the definition of content, we can determine a set of intervals containing
S, whose content lies between S and S+b, where

Mb=a . . . . . . . . . . . ()

M being any quantity greater than the greatest numerical value of the function in
question for points of S. v

The set of intervals consisting of the common parts of these two sets will contain
S, have content lying between S and S+, and also be such that the upper summation
with respect to S over it has a value lying between I and I+a. From among the
intervals of this set, we can determine a finite number n, such that the sum of the
remaining intervals is less than b. The content of the component of S which is not
external to these intervals is not less than S—0. The upper summation over the
remaining intervals is, by 2, numerically less than «; therefore the upper summation
over these n intervals is less than I+ 2a.

Let us now consider any division of S by means of segments (e, ¢/). There cannot
be more than 2n of these which lie partly inside and partly outside the n intervals.
The contribution of these to the upper summation will therefore be numerically less
than 2nMe.

Since, by what has been shown, the segments which are not entirely external to
the n intervals, enclose a component of S of content not less than S—0, the sum
of those segments which are external to the n intervals is not greater than
S-+e'—(S—b), that is ¢'+b; their contribution therefore to the upper summation is
less than M (¢’ +b) numerically.

Finally the contribution made by those segments which lie each inside one of the n
intervals cannot be greater than the upper summation over those intervals, that is
cannot be greater than I+2a. Hence the upper summation over these segments is
less than T+3a+M (¢'+2ne). Using (1), it follows that we have only to take

s = ¢;/2M (1 +2n)

so that the upper summation over the segments may differ from I by less than e,;
this proves the theorem.

§ 14. It is clear from the above proof that, when we divide S by means of
segments (e, ¢'), it is immaterial whether, in estimating the upper limit with respect
to S over any segment, we include the end-points of that segment (supposing them
to belong to S), or not ; the potency of the points of S not included will in either
case be the same, and, as the theorem shows, in either case the upper summation will
be within e; of the limit I, provided only e and ¢’ are sufficiently small.

Suppose, then, we exclude the end-points of every segment. Then the upper limit
of the values of the function for points of S inside any segment being the same as
that of the associated upper limiting function, we have the following result :—7The
quantity 1 is the same for a function and its upper limiting function,
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§ 15. Theorem 12.—The quantity 1 s the upper integral of the function with
respect to S. ' .

The result of the preceding section, together with the tact that the upper integral of a
function is the same as that of its upper limiting function, show that it is only necessary
to prove the present theorem for upper semi-continuous functions.

Let f be an upper semi-continuous function, and let us suppose the fundamental
set S divided up into a finite or countably infinite number of sets of points, E;, E, ... so
that the corresponding upper summation

B fi+E, fot+ ...

differs from the upper integral X by less than some assigned small positive quantity e.
Round every point of E, we can describe a small interval, in which the maximum
of f with respect to S differs from the value of f at P by a quantity less than, say

¢;, where
b : e +et... =e;

and this interval may be decreased indefinitely. That is, we have a set of tiles,* each
of which may be chipped as much as we please, and their points of attachment fill up E,.

Applying the Tile Theorem, we obtain a finite or countably infinite set of the
tiles, each less than e, covering up every point of I, and the sum of the tiles is less
than E;+¢';, where

/
eyt ... =

In like manner we get a set of tiles from each set E. Applying the Tile Theorem
to the set of all these tiles, since their points of attachment fill up S, we obtain a
finite or countably infinite set of them, covering every point of S, and the sum of all
is less than S+¢'.

To each of these tiles dp we make correspond the lowest integer ¢ such that its
point of attachment P belongs to E;; the sum of the tiles corresponding to any
particular integer + will then be less than E;+e¢’;, and the maximum of f in each will
be less than or equal to f;-+e;.

Now, if we include the boundary points of any interval, the set of intervals
consisting of (1) the simple parts and (2) the overlapping parts of the tiles, leaves
no points of S over, and gives us therefore a division of S by means of segments
(e, ¢). " Of these, the sum of the overlapping parts is less than ¢/, since the content
of the tiles is not less than S, and their sum not greater than S+¢; thus the
contribution of the overlapping parts is numerically less than Me¢/. The contribution
of the simple parts, on the other hand, is less than the upper summation over the
tiles themselves, that is, less than :

(f1+e) (Ete)+(fates) (Bate)+...
Thus the upper summation over these segments (e, €') is less than
X+e+Se+Me' +ee’ + Me'.

¥ Cp. “The Tile Theorem,” < Proc. Lond. Math. Soe.,” Ser. 2, vol. 2, Part L, p. 67.
2 H 2
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Choose e and ¢ so small that 1) this is less than X +e¢, and 2) it differs from I by less
than e (by Theorem 11), e being an assigned small positive quantity as small as we
please, which proves that in this case X and I must be identical, and so, as already
pointed out, proves the theorem.

§ 16. It is now possible to give the promised alternative definition of integration ;
the preceding theorems prove the equivalence of' the two definitions :—

Definition.—Let the fundamental set, excluding at most a set of points of zero
content, be enclosed in or on the borders of a set of non-overlapping segments each
less than e, and of content less than S+e. Then let the content of that component
of 8 in any segment be multiplied by the upper (lower) limit of the values of the
function at points of that component, and let the summation be formed of all such
products. Then it may be shown that this summation has a definite limit when e is
indefinitely decreased, independent of the mode of construction of the segments and
the mode in which e approaches the value of zero. Thas limit vs called the wpper
(lower) limit of the function with respect to the fundamental set S.

In the special case when the uwpper and lower integrals agree, the common value vs
called the integral of the function.

§17. To find the condition of integrability of a function with respect to a funda-
mental set, we require the following theorem :—

Theorem 13.—The upper (lower) integral of the sum of any finite number of upper
(lower) sema-continuous functions with respect to a fundamental set S is the sum of the
upper integrals of those functions.

Let F be the sum of two upper semi-continuous functions f; and f, ; then F is itself
upper semi-continuous. Then, by Theorem 11, ¢; being assigned, we can determine e,
so that if S be divided by means of segments (¢, ¢/) and the corresponding upper
summations formed, then provided only ¢ and ¢ are each less than e,, the summations,

Say, f1181+f.1232+ vee . . . . . . . . B . (1),
‘f2181+f2232+ cee . . . . B . . . . . (2),
Fus+Foso4... . . . . . . . . . . (3),

differ from the corresponding upper integrals by less than e,.

Since f1, /4 and F are all upper semi-continuous with respect to S, we can, to each
point P of 8, determine an interval round P, such that the maxima of fi, f5 and F in
that interval differ from the corresponding values of fi, fa, and F, by less than some
assigned small positive quantity e;, and this interval may be indefinitely decreased.

Applying the Tile Theorem, we see that every point of S is covered by one at
least of a countable number of these tiles, each less than e, no point of attachment
being covered by any other tile, and the sum of the tiles differing from S by less
than ¢. Thus we may take as our segments (e, ¢/) those respectively covered by the
simple and overlapping portions of these tiles, if we include the boundary points of
each such segment in it.
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The upper summation over the overlapping parts is in each of the three cases
numerically less than Me/, where M is a quantity greater than the greatest numerical
values of f}, f5, and F. The simple part s; of any tile dy, contains the point of attach-
ment P;, therefore the upper limit in that part differs from the value at P by less
than e, Thus the upper summation over the segments lies between

sifi (P)+safi (Po)+...—/M and s,/ (P)+sfi (Po)+... +e,S+e/M.

Thus, denoting by 6 with any distinguishing suffix or accent a quantity numerically
less than 1, _ :
0161+jf1ds = 6/Me'y+60,"Ses+5, 11 (P1)+80.f1 (Pa)+ ...

with similar equations for the other two functions.
Now the summation
siF (P)+s.F (Po)+...
is the sum of the corresponding summations for f; and f;; whence it follows that the
upper integral [Fds differs from the sum of the upper integrals of fi and f, with
respect to S by a quantity which is smaller than any assigned positive quantity,
which proves the theorem.

§ 18. Denoting by fi, —f,, and F the associated upper, lower, and oscillation
functions of a given function f, the three functions f;, f;, and F are all upper semi-
continuous with respect to the fundamental set, and F is the sum of f; and f,

The upper and lower integrals of f with respect to the fundamental set are, by
Theorem 10, the upper integral of f; and the lower integral of — f, respectively, and
the latter is minus the upper integral of f;, Thus the excess of the upper over the
lower integral of f with respect to the fundamental set is the sum of the upper
integrals of f; and f, that is, by Theorem 13, the upper integral of F with respect to
the fundamental set.

Thus f will be integrable with respect to the fundamental set if, and only if, the
upper integral of its associated oscillation function be zero.

Let G; denote the component of the fundamental set at which F has a value greater
than, or equal to, k; by Theorem 7, G, is a measurable set, let its content be I,
Then if, omitting at most a component of zero content, we enclose the fundamental
set by means of segments (e, ¢/), since the common part of two measurable sets is
measurable, there will be at most a component of G of zero content not included in
the segments, and the remaining component of G; will have content I;, Thus the
content of the components of the fundamental set in segments containing points of
G, will not be less than I, and the upper limit of F in each will not be less than £.
Hence the upper summation will not be less than I;£.

Thus it is clear that the upper integral of F' cannot vanish unless, for all positive
values of k, 1, is zero.

Theorem 14.—Thus the necessary and suffictent conditions that a function f should
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be integrable with respect to o measurable set S, is that the content of that component
of S at every pownt of which the oscillation of f us greater than, or equal to, k should,
Jor every value of k, be zero.

Remembering that the outer limiting set of measurable sets is measurable, and has
for content the limit of the contents of the defining components, this gives us the
following alternative statement :—

The necessary and suffficient condition that o function should be integrable with
respect to a measurable set S is that the content of that component of S, at every povnt
of which the function s continuous with respect to S, should be equal to the content
of S.

§ 19. With the ordinary definition of upper (lower) integration, or of integration, it
was at once evident that if' the segment or region of integration were divided into
two parts (segments or regions), the sum of the upper (lower) integrals over the
separate parts was the upper (lower) integral over the whole segment or region.

Theorem 15.—More generally, it s evident from Theorem 1 that the sum of
the wpper (lower) integrals over any set of non-overlapping segments or regions s
equal to the upper (lower) integral over the whole segment or region, provided only
the content of those segments or regions is the sawme as that of the fundamental
segment or region.

That this is not so for the general case when the fundamental set of points, whether
a segment or not, is divided into component sets is shown by the following simple
example :—

Ezxample 6.—Let f be zero everywhere except at the rational points of the
segment (0, 1), and let f have the value unity at the rational points, and consider
the integrals over the rational and irrational points separately ; both of these are
zero. 'The upper integral over the whole segment is however unity, and the lower
integral is zero.

The alternative definition of upper (lower) integration, given in §11, shows that
when the two component sets consist of parts of S obtained by means of segments,
the sum of the upper (lower) integrals over the two components is the upper (lower)
integral over the whole fundamental set.

Theorem 16.—More generally, the sum of the wpper (lower) integrals over any
Jinite or countably infinite number of non-overlapping components of S obtained by
meams of segments (e, €), is the same as the upper (lower) integral over the whole
Sundamental set, provided only the content of the components is equal to that of the
Jundamental set.

An upper (lower) semi-continuous function stands here again in an exceptional
position. We have, in fact, the following theorem :—-

Theorem 17.—The upper (lower) integral of an wupper (lower) sema-continuous
Sfunction over any fundamental set S is equal to the sum of ats integrals over every
finite or countably infinite number of sets into which S may be divided.
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This follows from the definition at the end of §11; for if we divide the funda-
mental set S into (for instance) two measurable components S; and S, and then
subdivide all three by means of segments, the definition shows that, in the case of an
upper semi-continuous function, the sum of the upper summations over the segments
with respect to S; and S, is not less than the upper integral. But in each segment
the sum of the contents of the parts of S, and S, is the content of the corresponding
part of S, while the upper limit corresponding to S is the greater of the upper limits
corresponding to S; and S,, so that the sum of the upper summations for S; and S; is
not greater than the upper summation for S. Thus the sum of the upper summations
with respect to S; and S, lies between the upper integral with respect to S and the
upper summation with respect to S. And since, by properly constructing the
segments, we can make the upper summations differ by as little as we please from
the corresponding upper integrals, this proves the theorem.

The above method of proof shows at the same time why it is that the theorem does
not hold for every function, for, if we form the associated upper limiting functions with
respect to S; and S, the values at the different points of 8; are not always the same.

§ 20. If in finding upper (lower) integrals we wish to divide the fundamental set
up into convenient components, we must first replace the function by its associated
upper (lower) limiting function. ‘

Example 6 is a particularly instructive one; the function is integrable over each
of the two component sets into which the segment which is the range of variation is
divided, and is not integrable over the segment itself. We easily see, however, that
the following theorems hold :—

Theorem 18.—If a function be integrable over the fundamental set S, 1t 1s integrable
over every component set of S. From Theorem 17 it now follows that

Theorem 19.-—The wntegral of an tntegrable function over its fundamental set S us
equal to the sum of its integrals over every finite or countably infinite number of
components into which S may be divided.

For, as has been shown in the preceding section, the upper integral of a function
over the fundamental set S cannot be less than the sum of the upper integrals over
the component sets ; and the lower integral of the function over S cannot be greater
than the sum of the lower integrals over the component sets. Since, however, the
function is integrable over S, it is also integrable over each of the components.
Therefore the integral over S cannot be less nor greater than the sum of the integrals
over the components, so that it must be equal to this sum. [Q.E.D.]

In this connection, it should be noted that the integration of an integrable
function (which has finite upper and lower limits) involves nowhere the idea of order,
even when, for convenience, we determine it as the sum of a countably infinite
number of integrals. The series of such integrals is an absolutely convergent one,
and it has the same sum however it be arranged.

Theorem 20.—The sum of the integrals of any finite number of integrable functions
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taken over the same fundamental set S is equal to the wntegral of the sum of the
Sunctrons taken over the set. This follows from Zheorem 18, which asserts the same
for upper (lower) integrals of upper (lower) semi-continuous functions. The proof is of
precisely the same nature as the preceding.

§21. We now proceed to obtain a formula for the upper (lower) integral of an
upper (lower) semi-continuous function over any measurable set of points, in terms of
an ordinary integral. These formula of course at the same time give us the upper
(lower) integral of any function, by reason of § 11.

Let K’ be any quantity not less than the greatest, and K not greater than the
least, value of an upper semi-continuous function f defined for a fundamental set S.
Divide (K, K') into n parts, and consider the sets of points G, Gy, ... G,, where G,

/
denotes all those points of S for which fis = K’ _K-

T

8 = Gy +(Gy—G)+... +(G,—G, ).

K r, and G, is S, so that

By Theorem 7, Gy, G, ... are measurable sets; let I, I, ... be their contents. Then
by the definition at the end of § 11, the upper integral, being not greater than any
upper summation, is not greater than

, , _—
KL+ (K2 (1) (R EEE

n 7

7') (L —L)+ ...

R -E=E o} -1 )+ (K2R (o),

n
€.,
K'-K

n

(Li+L+...+1,,+1)+KI,

however great n may be, and is therefore

KI
= j Idk+KS,
K

“since T is a monotone function of % and therefore an integrable one.

Here S is the content of the fundamental set, and I that of the set of* points for
which the values of the function are greater than or equal to k. But it was shown,
in § 6, that for any function whatever the greatest value of the lower summations is
certainly not greater than the least value of the upper summations, therefore the
upper integral is not less than all the lower summations. Hence the upper integral
is certainly not less than

(K,_K’;L_K) L+..+ <K’—K,;K 7') (Iq~_Ir—l)+ o {K/_K’_K (’I’L—‘—l)}(:[n_l—lf,;~2)

n

K

+(K'—K" n> (L—1,_.),
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that is, not less than

K K (I +. +I1z-—l)+KIn:

and therefore not less than j Idk +KS.*

Hence, finally the upper integral is actually equal to KS+§ Idk. In precisely

the same way it may be shown that the lower integral of a lower semi-continuous
function can be expressed as an ordinary integral. For variety I give the following
proof. .

Let f be a lower semi-continuous functlon and f'=—f; then f’is an upper semi-
continuous function ; and if K be not greater than the lower limit of f, and K’ not
less than the upper limit of f, then —K' is not greater than the lower limit of f’, and
—K not less than the upper limit of f’. -~ Hence, by what has just been proved,

j fio == frde = ~(~K)S= [ Jaw,

where J is the content of the set of points of S at which f” has a value = k.
Writing k& = —F, we have for the lower integral of f the expression K'S— J dk,

where J is the content of the set of points of S at which f has a value =k
Summing up, we have the following theorems :—
Theorem.—The upper integral of an upper semi-continuous functron with respect to

KI
a measurable set S s KS+§ Idk, where 1 us the content of that component of S at
K

every pount of which the function has a value greater than or equal to k.
Theorem 21.—The lower integral of a lower semi-continuous function with respect

K’
to « measurable set S is K’S——[ Jdk, where J us the content of that component of S at
K

every pownt of which the function has a value less than or equal to k.

In both these theorems K and K’ are quantities which are respectively less than or
equal to the lower limit, and greater than or equal to the upper limit of the function
for points of S.  Hence also

Theorem 22.— The upper integral of any functw/a with respect to a measurable set

S s KS+“K Idk, where 1 ©s the content of that component of S at every point of
which the maximum of the function is greater than or equal to k.

The lower wntegral s K’S—-":Jdlc, where J 1s the content of thot component of S
at every point of which the minimum of the function is less than or equal to k.

* This argument shows that in the case of an upper semi-continuous function the upper integral is equal
not only to the lower limit of the upper summations, but also to the upper limit of the lower summations
the latter is not to be confounded with the lower integral. Similarly for a lower semi-continuous function
both limits give the lower integral.

VOL. CCIV.—A. 21
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§ 22. By § 18 the condition that a function should be integrable with respect to a
measurable set S is that the upper integral of the associated oscillation function
should be zero. The latter function is upper semi-continuous, by the corollary to
Theorem 8, so that we can apply the preceding theorem, putting K = 0, since this
function is always positive or zero. )

Thus the condition of integrability is that ‘:O (k)dk should vanish, where 0 (k) is the
content of that component of S at every point of which the oscillation of the given
function is k. This is only possible if 0 (k) is zero, except possibly at a set of values
of k of zero content; as however, if 0 (k) were positive for any value of £, it would
be positive for every lesser value of k, and therefore for a set of values of content
greater than zero, it is clear that there can be no exception. Thus we get again the
condition of integrability obtained in § 18 (Zheorem 14).

§ 23. When the function is integrable, the upper and lower integrals are equal,
otherwise the upper is the greater, thus

K’ K’
KS+§ Tdk=K'S—| Jdk,
K JK
therefore

[enydb=®-K)s.
K

Now no point can be such that the maximum there is less than & while the minimum
is greater than k; thus every point of S belongs to at least one of the two sets
I and J. Let L denote the content of the set of points common to both I and J,

then*
1+J = S+L
‘Whence
K K
["(8+Lydk=(K'~K)S, thatis | Ldk=o0,
JK K

the sign of equality being allowable if, and only if, the function f is integrable.
Now L is the content of the set of points at each of which the maximum = k, while
the minimum is <% ; these points consist of :—
(1.) Points of continuity at which f=£; o _
(2.) Points of discontinuity at which either the maximum is >k and the
minimum =%, or the maximum = % and the minimum <#. )

But it is clear, as at the end of § 22, that if for any value of & the content of the
set (2) were not zero, there would be a set of values of % of positive content, for each
of which the content of the set (2) would not be zero; L would then not be a null
function and the given function would therefore not be integrable.

Thus we get a new form of the condition of integrability, and also theorems
relating to the distribution of the points of continuity of an integrable function, and
the values of a continuous function :—

* <Theory of Content,” p. 49, (5).
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Condation of  Integrability.—The necessary and sufficient condition for the
wtegrability of a function f over a measurable set S us that the content L of the set
of points for which the maximum of the function is =k while the minimum =k,
should be a function of k whose value is zero, except for a set of values of k of
content zero ; for each of these values of k the points of discontinuaty of the function
still form a set of content zero.

Theorem 23.—The content C of that component of the fundamental set whose points
are points of continuity at which an tategrable function = k, vs a function of k whose
value 1s zero, except for a set of values of k of content zero.

Theorem 24.—The content C of that component of the fundamental set at whose
pownts a continuous function =k, is a function of k whose value is zero, except for a
set of values of k of content zero.

§ 24. We now return to the tentative definitions of § 6, which we saw did not agree
with the usual definitions. On the other hand, the definitions we have since
constructed seem more artificial than these. It suggests itself, therefore, that the
most logical plan is to throw overboard the Riemann and Darboux definitions
altogether, and to define an integral as follows :—

Let the fundamental set be divided into measurable components in any conceivable
way, and let the content of each component be multiplied by the upper (lower) limit of
the values of the function at points of that component, and the sum of all such products
be formed ; then the outer (inner) measure of the integral is defined to be the lower
(upper) limat of all such summations.

If we assume either that all sets are measurable, or that all functions are such that
the points for which the values of the function are =k (=%) are measurable, or that
the functions with which we are concerned have this property, the argument of § 21
still applies, and we can assert that the outer measure is equal to the inner measure
of the integral, and that each can be expressed in either of the two forms

KS+K'I dk, RS- :Jdk,

where I and J are the contents of those components of 8, at every point of which the
function has values respectively =k and =#.

It is not known whether any but measurable sets exist, or whether any functions
can be constructed not having the above property. M. LeBescuk has, therefore, used
the term summable to denote the functions under consideration.

Precisely as in § 22 we can now prove the following theorem :—

Theorem.—The content C of that component of the fundamental set at every point
of which a summable function has the value k, is a function of k whose value is zero
except for a set of values of k of content zero.

In the case of a summable function, therefore, the outer and inner measures of the
integral agree, and we may call either the generalised integral of the function. As

212
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we have seen, functions which are integrable in the old sense are integrable in the
new sense, and the integrals agree, but the converse is not true. In the case of an
upper (lower) semi-continuous function, the generalised integral is the upper (lower)
integral. .

§ 25. LEBESGUE gives two definitions of his generalised integral, which T shall, for
convenience, allude to as the Lebesgue integral.

The first is a geometrical definition, and has the disadvantage that the positive
and negative values of the function have to be considered separately. It is as
follows :— ,

Geometrical Defiration of the Lebesque Integral.—Let f be a function defined for
every point of a finite segment (a, b) ; consider the plane set of points defined by the
three inequalities® L

a=x=b, yf(z)=0, 0=y =f(z)

Let E; and E, be the two parts of E respectively above and below the axis of a
(the points on the axis of 2 may be considered as beionging to whichever we prefer
E, or E;). If E is a measurable set, then both E, and E, are measurable.t In this
case the function f is said to be summable, and the excess of the content of E, over
that of E, is defined to be the Lebesgue integral of f over the segment («, b).

LrBrsaUr's second definition is analytical.

Analytical Definition of a Summable Function.—A summable funetion is such that
the set of values of @, for which the values of the function lie between any two
quantities @ and b, is measurable. Conversely, if' this condition is satisfied, and the
upper and lower limits of the function are finite, the function is summable.

Analytical Definition of the Lebesque Integral.—Let the region of variation of f'(x)
be denoted by (k, %,), and let it be divided into n parts each less than «, say, at the
point ki, ks, ... b,y ‘

Let ¢; denote the content of those points x at which f=k;; and ¢; that of the
points  at which k,_, < f(x) <k,

Then it may be shown that the two summations

n i 3 4t
Ske 42k, ¢, and ke, +3ke,
0 1 0 1

have a common limit, when « is decreased indefinitely; this limit is the Lebesgue
integral of f(x) from a to b.

The identity of the two definitions is easily proved ; in the case of a function which
is always positive, the former of the two given expressions evidently represents the

* Here I have corrected an obvious misprint in LEBESGUR’'S paper.

+ This is stated without proof by LEBESGUE in § 17 ; it is a special case of the theorem of §18, p. 251.
A more simple proof is afforded by considering E; as the common part of E and a sufficiently large
rectangle on the given segment as base and lying on the positive side of the z-axis, and T, as the difference
bevween B and By ; since the common part or the difference of two measurable sets is measurable. A
similar proof applies to the theorem of § 18, given helow here as the analytical definition.
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content of a plane set containing the set I, and the latter the content of a plane set
contained in K, so that the common limit must be the content of K. In the case
when the function is sometimes positive and sometimes negative, the sum of the
positive terms of the first summation is the content of a set containing E,, and the
sum of the negative terms, taken with positive sign, is the content of a set contained
in E,; similarly the second summation is the content of a component of E, minus the
content of a set containing E,; thus the common limit must be the content of E,
minus that of K, Thus the two definitions are identical.*

The second of LEBrscur’s definitions enables us without difficulty to identify the
Lebesgue integral with the generalised integral which I defined in §24. In fact,
comparing LEBESGUE'S notation with that used by myself in § 21, it is clear that

4
ci—l+()’i = I77,—~[+]"-In_i.

Whence the former of the two given expressions is equal to

]fo (In_]:n—l) + ]‘71 (In——l - In -—2) +.o+ kn—l (Il - IO) + anm
that 1is, :
kS + (kl - ko) Lo+ (kz— 71) Lot + (kn “kn—l) L,
which, as « is decreased indefinitely, approaches the limit

K

KS+ jKIdk,

that is, the generalised integral of § 24.

Thus the Lebesque integral is the same as the generalised integral of § 24, the

fundamental set being a finite segment.
- §26. Contrasting the definition of § 24 (S being now a finite segment) with the
geometrical definition of LeBEsGur, we see that they stand to one another in the
same relation as the ordinary definition of integration of, say, a continuous function
to its definition as a certain area. Just as, however, the mathematical conception of
area is more complex than and indeed depends on that of length, so does the theory
of the content of a plane set of points depend naturally on that of the content of a
linear set. Just as the determination of area requires the application of the processes
explained in the first definition of integration of continuous functions, so with the
content of a plane set. Thus the comparative simplicity of the geometrical definition
is only apparent. With regard to LeBrscur's analytical definition, I have pointed
out that it is equivalent to what seems to me the much more convenient form in
which I have expressed it as an ordinary integral (§ 24).

If ‘we know I as a function of £, which may be the case, all Lebesgue integration
and all upper and lower integration reduce to ordinary integration. It may, however,
happen that I is not readily found as a function of £ The definition of § 24 seems
then the most fundamental, and is, in many respects, very convenient in the theory.

* LEBESGUE, loc. cil., p. 252.
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§27. It is instructive to show the identity of LupEsGUE'S geometrical definition
with that of § 24 (S being a finite segment) directly. At the same time it should be
remarked that the argument is independent of the fact that S is a finite segment, so
that we have some general theorems with respect to the geometrical representation of
the processes of integration with respect to a set of points to which I shall return
in § 32.

Lemma 1.—If at every pownt of a measurable set G on the x-axis of content I we
place an ordinate of length p, the plane set constituted by this set of ordinates, or,
as I shall call them, for definiteness, this set of blocks, is measurable and has
content pl.

For we can enclose G in a set of non-overlapping intervals of content less than
I+e. Erecting on these rectangles of height p+e, we have enclosed the whole plane
set in a set of rectangles of content as near as we please to pl.  On the other hand,
taking in E a closed set of content greater than I—e, the corresponding set of
blocks forms a closed set of content as near as we please to pI. Thus the outer
measure of the content of the set of blocks is not greater than pl, and the inner
measure of the content is not less than pl, which proves the Lemma.

Suppose now we are given any measurable set S, and on S as base any set of blocks.
Let us denote the length of the block at the point x by X, and, for simplicity, let us
first consider X as being always positive. Then, if we divide S in any manner into a
finite or cou.ntably infinite set of measurable components, S;, S,..., and at each point
of S; we replace the given block by one of length equal to the upper limit of the
lengths of the blocks at points of S,, we get a new set of blocks which, regarded as a
plane set of points, contains the given set of blocks. Since the sum of a finite or
countably infinite series of non-overlapping measurable sets is a measurable set whose
content is the sum of the contents of its components, it follows that the new set of
blocks constitutes a plane set of points which is measurable, and has for content, by
the Lemma, the upper summation of X over S corresponding to the mode of division
adopted. Hence the outer measure of the content of the plane set of points
constituted by the given set of blocks is not greater than this upper summation, and
therefore, since this is true for every mode of division, not greater than the outer
measure of the integral of the blocks over S.  Similarly for the lower measure of the
integral.

If, on the other hand, X be sometimes positive and sometimes negative, we must,
as LEBESGUE does, consider separately the positive and negative blocks ; thus we get
the following theorems :—

Theorem 25.—An upper or lower summation is the difference of the contents of two
measurable sets of blocks, one on the positive and one on the negative side of the azwis
of .

Theorem 26.—Gven any set of blocks on a measurable set S, the outer measure of
the content of the plane set of points constituted by the positive blocks minus the inner


http://rsta.royalsocietypublishing.org/

a
FA
A

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

JA \

r

S

P
A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DR. W. H. YOUNG ON THE GENERAL THEORY OF INTEGRATION. 247

measure of the content of the negative blocks is not greater than the outer measure of
the integral of the blocks over 3. ‘ ‘

Svmalarly, the inner measure of the content of the positive blocks minus the outer
measure of that of the negative blocks vs not less than the inner measure of the integral.

In symbols

Er-Ei=1, E/-Ey=T,
where E, and E, are respectively the set of points constituted by the positive and the
negative blocks, and I denotes the integral, the indices 0 and ¢ denote outer and inner
measures respectively.

Denoting the sum of K, and E, by E, and supposing the upper and lower limits of
the lengths of the blocks to be finite, E, and E, are the common parts of E, and the sets
of blockson S as base whose heights are respectively the upper and the lower limits of
the lengths of the blocks, both these sets of blocks are measurable. Thus we see that,
if E is measurable, E; and E, are so also, so that I° and I’ are equal to one another
and to the difference of the contents of E; and E, that is to say, a summable
Sunction is integrable in the generalised sense of § 24, and the integral as defined in
LuBESGUE'S geometrical manner is the integral as defined i § 24, S being a finite
segment.

Conversely, it I» and I’ are equal,

Er-E =1l =E/-Ey,
but since the outer content of a set is not less than the inner content,

Ef—Ey = E/—Ey, whence E;/—E)j=E/—Ey"
Therefore
Er+Ey=E/+Ey,
and therefore, since the outer measure of the content of E is not greater than E;°+ Ey,
and the inner measure is not less than E/+E,, the inner and outer measures
of the content of E are equal, and K is a measurable set. Thus a function which is
integrable with respect to « finite segment in the generalised sense of § 24 is «
summable function, and its integral is the Lebesque integral, by LEBESGUE'S geometrical
definition. ,

Summing up the results of this section, we have the following theorem :—

Theorem.—Lebesgue integration 1s identical with generalised integration with
respect to « finite seqgment.

§ 28. In general, without confining our attention to finite segments, we have from
what has been shown the following geometrical definition of generalised integration
with respect to a measurable set S :—

Geometrical Definition.—At each point x of « measurable set S draw an ordinate
(block) equal to the value of a function defined for every point of S, the outer measure
of the content of the positive blocks minus the inner measure of the negative blocks s
called the outer measure of the integral function with respect to the fundamental set.
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Set S.—1If the whole set of blocks is measurable, the function is said to be integrable
in the generalised sense (or swummable) with respect to the fundamental set S.  In this
case the positive blocks alone form a measurable set, and so do the negative blocks,
and the excess of the content of the positive over that of the negative blocks is called
the generalised wntegral of the function with respect to S.

LeBEscUE (p. 255) has occasion to use integration with respect to a measurable set,
but only in the case when the set is contained in a finite segment. The mode of
definition adopted by him is that of completing the function by ascribing to it the
value zero at all points of the segment other than those of the set in question, and
then defining the integral of the function with respect to the fundamental set as
equal to that of the extended function in the whole segment. In this case the
generalised integral so defined is evidently the same as that defined above and in
§ 24 ; the mode of definition is, however, open to some objection ; characteristic
properties of the function such as continuity or semi-continuity with respect to the
fundamental set, which materially simplify the properties of the integral, are not
maintained by the extended function; on the other hand the definition suggests a
difficulty, when dealing with fundamental sets of finite content not lying in a finite
segment, which is entirely illusory, and gives a pre-eminence to the finite segment as
region of operation which it does not in reality in any way possess.

§29. LeBEscUE's theorem that the sum of two swmmable functions is a summable
tunction, and its integral is the sum of their integrals, is equally true when the
fundamental set is any measurable set of finite content. Tt is an immediate rvesult of
any of the definitions that this is the case when one of the functions is a constant,
thus, the upper and lower limits being as usual finite, if the theorem is true for
positive functions it is true always. In the case of positive functions the theorem is
geometrically equivalent to the following :-—

Theorem 27.—Gven any set of positive blocks forming « measurable plane set of
points, the blocks may be shifted wp parallel to themselves without altering the content
of the set, provided the amount of shifting at each pont x is a summable function of .

Divide the base S up into any number of measurable

Ry components Sy, 8,, ... and consider the set in the shifted

position. At any point 2 of S; let the block he PQ, so

that Pz represents the amount of shifting from the position

P! when the lower extremities were all on the x-axes. Prolong

» the block to R, so that PR is equal to the upper limit of

the length of' the blocks corresponding to all points of S, In
this way we get a plane set containing the given set.

Now, by Lemma 1, § 27, the content of a set of blocks each
of length PR, erected at all the points of 8, 1s PR.S,. Hence, since we may
evidently consider Rz as having been obtained by shifting up the ordinate Pz the con-
stant amount PR, the content of the set of blocks Ra = that of the blocks Px+PR.S,.

xr

Fig. 1.
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Now the blocks Px form a measurable set, by the usual argument, since they
consist of the part of a measurable set of blocks on a measurable component S; as
base ; therefore the blocks PR at each point of S,, shifted up to the position of the
figure, being the difference of two measurable sets, form a measurable set, and the
content 18 PR .S, that is, the same as it was before shifting. Since this is true for
each component 3, it is true for the whole set of elongated blocks, that they form a
measurable set whose content is the same as it was before shifting.

Now, by § 27, we know that, before shifting, the content of this set was the upper
summation of the lengths of the given blocks, that is PQ, over the fundamental
set 8, divided into 8;, S,,... Thus this upper summation, being the content of a
plane set containing the given set, is not less than the content of the given set (of
course in the shifted position).

Similarly the corresponding lower summation is not greater than the same content.
But the lower limit of the upper summations is equal to the upper limit of the lower
summations, since either of them represents the content of the given blocks before
they were shifted up from the a-axes. Thus the same content is itself neither less
nor greater than the content of the set in the shifted position, that is to say, the
content has been left unaltered by the shifting. [Q.E.D.]

Corollary 1.—1In the shifted position the content is still the generalised integral of
the length of the blocks.

Corollary 2.—The sum of any finite number of summable functions is a summable
Sunction, and its integral is the sum of their integrals, the fundamental set being any
measurable set of finite content.

Corollary 3.—Since the limit of a sequence of measurable sets is a measurable set,
it also follows that the sum of an absolutely convergent series of summable functions is
a summeable function, and its generalised integral is the sum of their integrals,
provided, as usual, the functions have finite upper and lower limaits.

§ 30. By means of a theorem proved in my paper on “ Upper and Lower Integra-
tion,”* we can extend the results of § 29 still further. The theorem quoted states
that, if X’ be the content of the section of a closed plane set by the ordinate through
the point « of the x-axis, the content of the plane set is [X'dw, and that, further, X
is an upper semi-continuous function of X. It follows, then, by § 24, that the content
is the generalised integral of X'.

The theorem now to be proved is as follows :—

Theorem 28.—If X* and Xt be the outer and inner measures of the content of the
ordinate section of a measurable set such that the set got by closing it is of finite
content, by the ordinate through the point x, X and X are both summable functions,
and the generalised wntegral of either is the content of the measurable set.

Let I be the content of the set, and ¢ any assigned small positive quantity. Let us

¥ «Proc. Lond. Math. Soc.,” Ser. 2, vol. 2, Part I, p. 60.
VOL. CCIV.—A. 2 K
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take a closed component of the given set of content greater than I—e. Denoting by
X’ the content of the ordinate section of this set, we have, by the theorem quoted,

T—e<|{X'du.
Since X’ is an upper semi-continuous function, it follows, by § 24, that
I—e< the upper limit of the lower sﬁmmations of X/,
or, since X’ is not greater than X7,
T—e< the upper limit of the lower summations of X*,
Since e may be as small as we please,

I = the upper limit of the lower summations of X,

= the upper limit of the lower summations of X,

Next let the content of the set got by closing the given set be denoted by S, and
that of the complementary set by J, so that

I+J =8,

Denoting by Y and Z’' the quantities for the complementary set and the whole
closed set corresponding to X’ for the given set, we have, as before,

J = the upper limit of the lower summations of Y*.

Now (Z'—Y’) is the content of the difference of two closed sets, that is of an inner
limiting set,* containing the set X, therefore,

=Y =X =X
Hence

J = the upper limit of the lower summations of (7' —X),

= the upper limit of (a lower summation of Z/ minus an unper summation of X°).
p

But the upper limit of the lower summations of Z’ is the generalised integral of Z/,
that is, S; therefore

J =8S— the lower limit of the upper summations of X,
that 1s,
I = the lower limit of the upper summations of X,
o fortiort,
I = the lower limit of the upper summations of X,

Now (§ 6) every upper summation of a function is greater than, or at least equal
to, any lower summation, so that a quantity cannot be less than the upper limit of the

* ¢Theory of Content,” p. 36.


http://rsta.royalsocietypublishing.org/

s \
Vam \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DR. W. H. YOUNG ON THE GENERAL THEORY OF INTEGRATION. 251

lower summations without being less than the lower limit of the upper summations;
neither can it be greater than the lower limit of the upper summations without being
greater than the upper limit of the lower summations. Thus I must be actually
equal to the upper limit of the lower summations as well as to the lower limit of the
upper summations in the case of either X° or X?; that is to say, I is the generalised
integral of either X° or X¢, and both these functions are summable. [Q.E.D.]

Corollary 1.—Each ordinate section of a measurable set being moved on its
ordinate in such a manner that the (linear) content of the section is unaltered, and
that the whole set remains measurable, the content of the whole set 1s unaltered.

Corollary 2.— At each point of a set of points of content A draw an ordinate,
and on it take any set of points of (linear) content B, the content of the whole sct
so formed 1s AB.

Here, as elsewhere, the fundamental set need not be a linear set, but may have a
content of any number of dimensions.

, K’
§ 31. The preceding section, coupled with § 24, give usj Idk as the content of any
0

measurable set (provided the set got by closing it has finite content), here I is the
content of the set of points of the fundamental set at which the inner (or the outer)
measure of the content is = 4. This, together with the preceding section, give the
solution of the problem alluded to in § 26, viz., the reduction of the calculation of
n-dimensional content to that of (n—1)-dimensional content, and so ultimately to
that of linear content.

Bearing in mind the definition of a generalised integral, we have the following rule
for finding the content of an n-dimensional set :—Take any hyperplane section of the
set, project the set on to this hyperplane, and take any measurable set containing
this projection as the fundamental set S. Divide S up in any way into a finite or
countably infinite set of measurable components, and multiply the content of each
component by the upper (lower) limit of the values of the (linear) inner or outer
content of the corresponding ordinate sections of the given set; summing all
such products, the lower {upper) limit of all such summations is the content of the
given set.

§ 32. I have explained the geometrical representation of generalised integration
with respect to a set. It is of interest to note the corresponding representations of
what I call ordinary upper and lower integration with respect to a set.

Consider first the case where the fundamental set S is a segment, and form the set
of blocks corresponding to the generalised integral of the function. If the function
is everywhere positive, the geometrical representation of the ordinary upper integral
is obtained by closing the plane set of points constituted by the blocks. If the
function is not everywhere positive, we can make it so by adding a constant, which
is geometrically equivalent to adding a rectangle to the representative set, part of
which, viz., E, was to be considered as negative, and must be subtracted from the

2 K 2
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rectangle ; this addition of the rectangle is therefore equivalent to sinking the axis
of @ to a convenient position, so that all the blocks become positive. The upper
integral of the given function, plus the constant, is now represented by the set got
by closing the set of blocks. From this we have now

. ) C . ,
to subtract again the rectangle, or, which is the same
”mm‘[m thing, return the x-axis to its original position, in
¢ | = order to get the geometrical representation of the
[ upper integral of the given tunction.
Fig. 2. Thus, in the general case, the geometrical repre-

sentation of the upper integral is not precisely a
closed set, but a closed set minus a rectangle, as is shown roughly in fig. 2, viz., the
shaded region, of which the part below the x-axis, corresponding to E,, is to be
considered as negative, and the other part, corresponding to Ey, is closed.

Similarly, in the case of a function which is always negative, the geometrical
representation of the lower integral is a closed plane set constituted by blocks; in
the general case it 1s represented by the excess of a rectangle over such a set.

When the fundamental set S is any measurable set whatever, instead of closing
the fundamental set actually, we do so relative to S, that is, we take in only those
limiting points which lie on ordinates through 8. The rectangle to be subtracted in
the case of the ordinary upper integral, or from which the relatively closed set is to
be subtracted in the case of a lower integral, is then a relative rectangle, that is, that
part of a rectangle which lies on the ordinates through S,
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